Uphill $=$ "towards higher potential"
\qquad

Negative target charges tend to move uphill.
Positive target charges tend to move downhill.

Potential of a Single Point Charge

$$
\begin{aligned}
& V=k \frac{q}{d}+V_{\infty} \\
& k=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}
\end{aligned}
$$

For this chapter, we'll assume $V_{\infty}=\mathbf{0}$.

$$
V=k \frac{q_{1}}{d_{1}}+k \frac{q_{2}}{d_{2}}+k \frac{q_{3}}{d_{3}}+V_{\infty}
$$

What is the potential at the star? $V_{\infty}=0$

$$
\begin{aligned}
& V=k \frac{q_{1}}{d_{1}}+k \frac{q_{2}}{d_{2}} \\
& V=\left(9 \times 10^{9}\right)\left[\frac{3 \times 10^{-6}}{(0.4)}+\frac{6 \times 10^{-6}}{0.8}\right] \\
& V=\left(9 \times 10^{9}\right)\left[7.5 \times 10^{-6}+7.5 \times 10^{-6}\right]
\end{aligned}
$$

$$
V=1.35 \times 10^{5}=\mathbf{1 3 5} \mathbf{k V}
$$

What is the potential at the star? $V_{\infty}=0$

$$
\begin{aligned}
& V=k \frac{q_{1}}{d_{1}}+k \frac{q_{2}}{d_{2}} \\
& V=\left(9 \times 10^{9}\right)\left[\frac{3 \times 10^{-6}}{(0.4)}-\frac{6 \times 10^{-6}}{0.8}\right] \\
& V=\left(9 \times 10^{9}\right)\left[7.5 \times 10^{-6}-7.5 \times 10^{-6}\right] \\
& V=0 \mathrm{~V}
\end{aligned}
$$

$P E=(m g) h$

$$
\begin{aligned}
& \text { PE }=q_{t} V \\
& P E=q_{t}\left(k \frac{q_{s}}{d}\right) \\
& P E=k \frac{q_{t}}{\bullet}=k \\
& \boldsymbol{q} \frac{q_{s} q_{t}}{\boldsymbol{d}} \text { between two point charges }
\end{aligned}
$$

Total PE of this system
is sum of PE of each relationship

Total PE of a target charge is sum of PE of the relationships involving that target charge

