

A) electrons B) protons C) both of these

4

2. _____ The total charge of a box with its contents is $+3 \mu$ C. We remove an object from inside the box which has a charge of -5μ C. What is the total charge of the box now? **A)** -8μ C **B)** -2μ C **C)** $+2 \mu$ C **D)** $+3 \mu$ C **E)** $+5 \mu$ C **F)** $+8 \mu$ C

3. A $3.2 \,\mu\text{C}$ charge is placed so that it is $0.3 \,\text{m}$ above a $-4.5 \,\mu\text{C}$ charge.

(b) _____ If you moved a $-4.7 \,\mu\text{C}$ charge from the top line to the bottom line, what is the change in the charge's potential energy PE?

A) $-14.1 \,\mu J$ B) $-3 \,\mu J$ C) $-0.6 \,\mu J$ D) $0.6 \,\mu J$ E) $3 \,\mu J$ F) $14.1 \,\mu J$

4

4

5. Consider a $2\,\mu\text{C}$ charge and a $-3\,\mu\text{C}$ charge that are $1.2\,\text{m}$ apart. ► +2µC 4 (a) _____ Find the electric potential halfway in between these charges (at the star). 1.2m প্ল **A)** $-150.0 \,\text{kV}$ **B)** $-90.0 \,\text{kV}$ **C)** $-25.0 \,\text{kV}$ **D**) $-15.0 \,\text{kV}$ **E**) $75.0 \,\text{kV}$ **F**) $125.0 \,\text{kV}$ -3µC 4 (b) _____ What is the magnitude of the electric field halfway between the two charges? **A)** 15 kN/C **B)** $25 \,\mathrm{kN/C}$ **C)** 75 kN/C **D)** 90 kN/C **E)** 125 kN/C **F)** 150 kN/C 46. _____ A functioning battery always maintains a constant A) current B) energy C) potential difference D) power 7. Suppose a I = 0.57 A current flows through a mystery box; the current flows from a potential V = 0 V to a potential V = 3.4 V. 0 57 A 0V ° • 3.4V (a) _____ Which of these is true? 4 A) The box releases power from the current **B)** The box supplies power to the current (b) _____ How much power? 4 **A)** 0.17 W **B)** 1.9 W **C)** 1.94 W **D)** 5.96 W

4

9.

This shows a junction. What is the current in the wire labelled with the "?"?

A) $1A \searrow$ B) $1A \checkmark$ C) $5A \searrow$ D) $5A \checkmark$ E) $7A \searrow$ F) $7A \checkmark$ G) $11A \searrow$ H) $11A \checkmark$

14. Consider this set of resistors, with the two terminals shown.

4

4

(a) _____ Which pair of resistors are in parallel with each other?
A) 3Ω and 5Ω B) 5Ω and 7Ω
C) 3Ω and 7Ω D) none of these

(b) _____ What is the equivalent resistance of these two resistors?
 A) 1.48 Ω B) 3.33 Ω C) 5.48 Ω
 D) 5.58 Ω E) 7.1 Ω F) 15 Ω

15. Consider this circuit.

 I_C

 $\leq 4\Omega$

 l_B

6V

3Ω

3 17. Here is an electric field created by several charges. What is the charge (+

or –) of each of them? A_____ B____ C____

18. These two magnets will...each other. (A) attract (B) repel

2

2

19. A horseshoe magnet is a bar magnet that is bent into this curved shape. What is the direction of the magnetic field at the star? (In other words, in what direction would a compass point if placed at the star?) A) \uparrow B) \leftarrow C) \downarrow D) \rightarrow

20. Consider a long straight wire carrying I = 0.52 A upward. (a) _____ What is the direction of the magnetic field at the star? 4 $\mathbf{A)} \leftarrow \quad \mathbf{B)} \rightarrow \quad \mathbf{C)} \uparrow \quad \mathbf{D)} \downarrow$ **E)** \odot (out of the page) **F)** \otimes (into the page) I = 0.52A4 (b) Find the magnitude of the magnetic field at the star. d = 0.023m 21. This loop of wire carries a current counterclockwise as seen from above. What is the direction of the magnetic field... **(a)** 2 (a) _____ ...at (a)? $\mathbf{A}) \leftarrow \quad \mathbf{B}) \rightarrow \quad \mathbf{C}) \uparrow$ **D**) ↓ **E)** \odot (out) **F)** \otimes (in) **(c)** (b) _____ ... at (b)? |2| $\mathbf{A)} \leftarrow \quad \mathbf{B}) \rightarrow \quad \mathbf{C}) \uparrow$ **D**) ↓ **E**) \odot (out) **F**) \otimes (in) 2 (c) _____ ... at (c)? $\mathbf{A}) \leftarrow \quad \mathbf{B}) \rightarrow \quad \mathbf{C}) \uparrow$ **D**) ↓ **E**) \odot (out) **F**) \otimes (in)

- 22. A magnetic field $B = 4 \times 10^{-3}$ T points out of the page in the grey area. A charge $q = +4.3 \times 10^{-6}$ C moves to the left at 85 m/s.
 - (a) _____ What is the direction of the force on the charge? **A**) \leftarrow **B**) \rightarrow **C**) \uparrow **D**) \downarrow **E**) \odot (out) **F**) \otimes (in)
 - (b) What is the magnitude of the force on the charge?

4

4

4

2

(c) This charge will move in a circle. What is the radius of that circle, if the mass of the charge is $m = 2 \times 10^{-10}$ kg?

23. _____ A square loop of wire enters a magnetic field which is pointing out of the page, which induces a current inside the loop. In which direction does the induced current flow?
 A) clockwise ○ B) counterclockwise ○

