\qquad
(b) \qquad This is due to the flow of. . . across the metal.
A) electrons
B) protons
C) both of these
2. \qquad The total charge of a box with its contents is $+3 \mu \mathrm{C}$. We remove an object from inside the box which has a charge of $-5 \mu \mathrm{C}$. What is the total charge of the box now?
A) $-8 \mu \mathrm{C}$
B) $-2 \mu \mathrm{C}$
C) $+2 \mu \mathrm{C}$
D) $+3 \mu \mathrm{C}$
E) $+5 \mu \mathrm{C}$
F) $+8 \mu \mathrm{C}$

3. A $3.2 \mu \mathrm{C}$ charge is placed so that it is 0.3 m above a $-4.5 \mu \mathrm{C}$ charge.
(a)

A) 0.048 N
B) 0.13 N
C) 0.16 N
D) 0.432 N
E) 1.44 N
(b) What is the potential energy of the two charges, if $P E_{\infty}=0$ (as usual)?
A) 0.048 N
B) 0.13 N
C) 0.16 N
D) 0.432 N
E) 1.44 N
(c) ___ If released, the $3.2 \mu \mathrm{C}$ will move
A) upward \uparrow
B) downward \downarrow
(d) As the charges move in the direction you indicated in the previous part, the potential energy of the charges
A) increases
B) decreases

Page 2
4. Given these equipotential lines,
(a) What is the average electric field between these lines? $-4.7 \mu \mathrm{C}$
A) $0.1 \mathrm{~V} / \mathrm{m} \uparrow$
B) $0.9 \mathrm{~V} / \mathrm{m} \uparrow$
C) $10 \mathrm{~V} / \mathrm{m} \uparrow$
D) $0.1 \mathrm{~V} / \mathrm{m} \downarrow$
E) $0.9 \mathrm{~V} / \mathrm{m} \downarrow$
F) $10 \mathrm{~V} / \mathrm{m} \downarrow$

(b) \qquad If you moved a $-4.7 \mu \mathrm{C}$ charge from the top line to the bottom line, what is the change in the charge's potential energy $P E$?
A) $-14.1 \mu \mathrm{~J}$
$\begin{array}{ll}\text { B) }-3 \mu \mathrm{~J} & \text { C) }-0.6 \mu \mathrm{~J}\end{array}$
D) $0.6 \mu \mathrm{~J}$
E) $3 \mu \mathrm{~J}$
F) $14.1 \mu \mathrm{~J}$
5. Consider a $2 \mu \mathrm{C}$ charge and a $-3 \mu \mathrm{C}$ charge that are 1.2 m apart.
(a) \qquad Find the electric potential halfway in between these charges (at the star).
A) -150.0 kV
B) -90.0 kV
C) -25.0 kV
D) -15.0 kV
E) 75.0 kV
F) 125.0 kV

(b) What is the magnitude of the electric field halfway between the two charges?
A) $15 \mathrm{kN} / \mathrm{C}$
B) $25 \mathrm{kN} / \mathrm{C}$
C) $75 \mathrm{kN} / \mathrm{C}$
D) $90 \mathrm{kN} / \mathrm{C}$
E) $125 \mathrm{kN} / \mathrm{C}$
F) $150 \mathrm{kN} / \mathrm{C}$
6.

A functioning battery always maintains a constant
A) current
B) energy
C) potential difference
D) power
7. Suppose a $I=0.57$ A current flows through a mystery box; the current flows from a potential $V=0 \mathrm{~V}$ to a potential $V=3.4 \mathrm{~V}$.
(a) \qquad Which of these is true?

A) The box releases power from the current
B) The box supplies power to the current
(b) How much power?
A) 0.17 W
B) 1.9 W
C) 1.94 W
D) 5.96 W
8. Consider this battery with an emf of $\mathcal{E}=3 \mathrm{~V}$.
(a) \qquad If the potential at the negative end of the battery is 1 V , the potential at the positive end of the battery is
A) -2 V
B) 1 V
C) 2 V
D) 3 V
E) 4 V

(b) Which current is larger?
A) I_{A}, going into the battery
B) I_{B}, coming out of the battery
C) Both currents are the same
9. \qquad This shows a junction. What is the current in the wire labelled with the "?"?
A) $1 \mathrm{~A} \searrow$
B) $1 \mathrm{~A} \nwarrow$
C) $5 \mathrm{~A} \searrow$
D) $5 \mathrm{~A} \nwarrow$
E) $7 \mathrm{~A} \searrow$
F) $7 \mathrm{~A} \nwarrow$
G) $11 \mathrm{~A} \searrow$
H) $11 \mathrm{~A} \nwarrow$

Page 5
10. How many different currents are in this circuit? \qquad Label them I_{A}, I_{B}, etc.

11. A 45Ω resistor has a potential of -5 V on the left and +2 V on the right.
(a) \qquad What direction is current running through the resistor?
A) to the left \leftarrow
B) to the right \rightarrow

(b) \qquad What is the magnitude I of that current?
A) 0.04 A
B) 0.11 A
C) 0.16 A
D) 6.43 A
E) 288.66 A
F) 315 A
12. \qquad What is the equivalent resistance of these two resistors?
А) 0.48Ω
B) 2.1Ω
C) 10Ω
D) 21Ω

Page 6
13. Consider this circuit; the current through it is 3 A .
(b) \qquad If the potential at the negative end of the battery is $V=0 \mathrm{~V}$, what is the potential V at V_{A} ?
A) 0 V
B) 1 V
C) 2 V
D) 3 V
E) 4.5 V
F) 6 V
G) 9 V
14. Consider this set of resistors, with the two terminals shown.
(a) Which pair of resistors are in parallel with each other?
A) 3Ω and 5Ω
B) 5Ω and 7Ω
C) 3Ω and 7Ω
D) none of these
(b) \qquad What is the equivalent resistance of these two resistors?

A) 1.48Ω
B) 3.33Ω
C) 5.48Ω
D) 5.58Ω
E) 7.1Ω
F) 15Ω
15. Consider this circuit.
(a) \qquad Which of the following is true?
A) $I_{A}=I_{B}+I_{C}$
B) $I_{B}=I_{A}+I_{C}$
C) $I_{C}=I_{A}+I_{B}$
(b) Write a loop rule equation involving the two batteries.
(c) Find I_{A}.
16. $\mathrm{A}-9.3 \mu \mathrm{C}$ charge is placed in an electric field, and feels a force of 0.24 N to the left. The electric field at this point is
A) $0.03 \mathrm{MN} \rightarrow$
B) $0.03 \mathrm{MN} \leftarrow$
C) $2.23 \mathrm{MN} \rightarrow$
D) $2.23 \mathrm{MN} \leftarrow$
E) $38.75 \mathrm{MN} \rightarrow$
F) $38.75 \mathrm{MN} \leftarrow$

3
17. Here is an electric field created by several charges. What is the charge (+ or -) of each of them? A \qquad B \qquad C \qquad

18. \qquad These two magnets will. . . each other.
A) attract
B) repel

19. \qquad A horseshoe magnet is a bar magnet that is bent into this curved shape. What is the direction of the magnetic field at the star? (In other words, in what direction would a compass point if placed at the star?)
A) \uparrow
B) \leftarrow
C) \downarrow
D) \rightarrow

Page 9
20. Consider a long straight wire carrying $I=0.52 \mathrm{~A}$ upward.
21. This loop of wire carries a current counterclockwise as seen from above. What is the direction of the magnetic field. . .
(a) \qquadat (a)?
A) \leftarrow
B) $\rightarrow \quad$ C) \uparrow
D) \downarrow
$\mathbf{E}) \odot($ out $) \quad \mathbf{F}) \otimes($ in $)$
(b) \qquad
A) \leftarrow
B)
C
$\mathbf{E}) \odot($ out $) \quad \mathbf{F}) \otimes($ in $)$
(c) \qquad \ldots. at (c)?
A) \leftarrow
B) $\rightarrow \quad$ C) \uparrow
D) \downarrow
$\mathbf{E}) \odot($ out $) \quad \mathbf{F}) \otimes($ in $)$
\qquad What is the direction of the magnetic field at the star?
A) \leftarrow
B) \rightarrow
C)
D) \downarrow
E) $\odot($ out of the page $) \mathbf{F}) \otimes$ (into the page)
(b) Find the magnitude of the magnetic field at the star.

22. A magnetic field $B=4 \times 10^{-3} \mathrm{~T}$ points out of the page in the grey area. A charge $q=+4.3 \times 10^{-6} \mathrm{C}$ moves to the left at $85 \mathrm{~m} / \mathrm{s}$.
(a) \qquad What is the direction of the force on the charge?
A) \leftarrow
B) $\rightarrow \quad \mathbf{C}) \uparrow$
D) \downarrow
$\mathbf{E}) \odot($ out $) \quad \mathbf{F}) \otimes($ in $)$
(b) What is the magnitude of the force on the charge?
(c) This charge will move in a circle. What is the radius of that circle, if the mass of the charge is $m=2 \times 10^{-10} \mathrm{~kg}$?
23. \qquad A square loop of wire enters a magnetic field which is pointing out of the page, which induces a current inside the loop. In which direction does the induced current flow?
A) clockwise 〕
B) counterclockwise \circlearrowleft

