Physics 102 Homework \# | 0
 not to be turned in!

1. What is the electric field 0.61 m below a $-22 \mu \mathrm{C}$ negative
charge? Give the magnitude and direction, please.

The electric field due to a point charge is $|\vec{E}|=k \frac{\left|q_{s}\right|}{r^{2}}$, so

$$
E=\left(9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right) \frac{22 \mu \mathrm{C}}{(0.61 \mathrm{~m})^{2}}=5.32 \times 10^{5} \mathrm{~N} / \mathrm{C} \text { or } \mathbf{5 3 2 k N} / \mathbf{C} .
$$

$$
-22 \mu \mathrm{C}
$$

Electric fields point towards the negative charge, or upward. Thus

$$
\vec{E}=+532 \mathrm{kN} / \mathrm{C} \uparrow
$$

2. Now suppose we add a $-13 \mu \mathrm{C}$ charge 0.37 m below the star. What is the electric field at the star now?

$$
-22 \mu \mathrm{C}
$$

The electric field due to the second point charge is

$$
E_{2}=\left(9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right) \frac{13 \mu \mathrm{C}}{(0.37 \mathrm{~m})^{2}}=8.55 \times 10^{5} \mathrm{~N} / \mathrm{C} \text { or } 855 \mathrm{kN} / \mathrm{C}
$$

towards the negative charge, which is downward. Thus

$$
\vec{E}_{2}=855 \mathrm{kN} / \mathrm{C} \downarrow .
$$

The total electric field at the star is the sum of these two fields:

$$
\vec{E}=\vec{E}_{1}+\vec{E}_{2}=532 \mathrm{kN} / \mathrm{C} \uparrow+855 \mathrm{kN} / \mathrm{C} \downarrow .
$$

$-13 \mu \mathrm{C}$

If we call downward the "positive direction", then

$$
\vec{E}=\vec{E}_{1}+\vec{E}_{2}=(-532+855) \mathrm{kN} / \mathrm{C}=+323 \mathrm{kN} / \mathrm{C}=\mathbf{3 2 3 k N} / \mathrm{C} \downarrow .
$$

Some folks in the past used the Pythagorean Theorem, but you only use that if the vectors are perpendicular to each other (one horizontal, one vertical).
3. A star and a circle are 0.15 m apart. The potential at the star is $V=35 \mathrm{~V}$. The electric field between the two shapes is $530 \mathrm{~N} / \mathrm{C}$. What is the potential at the circle?

When the potential difference between two points a distance d apart is ΔV, the average electric field between them is $E_{\text {avg }}=\frac{\Delta V}{d}$. Thus $\Delta V=E d=(530 \mathrm{~N} / \mathrm{C})(0.15 \mathrm{~m})=80 \mathrm{~V}$. The electric field points "downhill", which means that the circle is 80 V higher than the 35 V star, or $\mathbf{1 1 5 V}$.

A lot of folks in the past got the $\Delta \mathrm{V}$ correctly, but then did something sophisticated with V_{f} and V_{i} and got mixed up. The problem is that this equation $E=\Delta V / d$ doesn't really handle negative signs very well or directions very well. I really recommend doing it the way I did: the change is 80 V , and the circle is uphill, so it must be 80 V higher than 35 V .
Another way would be to think of ΔV as $V_{\text {high }}-V_{\text {low }}$, where the electric field points from $V_{\text {high }}$ to $V_{\text {low }}$. In this case, 35 V must be $V_{\text {low }}$, so $80=V_{\text {high }}-35 \Longrightarrow V_{\text {high }}=115 \mathrm{~V}$.
4. Referring to the same picture: if I place a $+24 \mu \mathrm{C}$ charge in between the circle and the star, what is the force the charge feels due to the electric field? Include magnitude and direction, please.

The force on a target charge in an electric field is $\vec{F}=q_{t} \vec{E}$, and so the force on the $24 \mu \mathrm{C}$ charge is

$$
\vec{F}=(24 \mu \mathrm{C})(530 \mathrm{~N} / \mathrm{C} \rightarrow)=\mathbf{0 . 0 1 2 7 \mathrm { N }} \text { to the right. }
$$

5. What is the magnitude of the magnetic field at the star, if the current in this long, straight wire is $\mathrm{I}=0.37 \mathrm{~A}$?

The field a distance r from a wire is given by
$\vec{B}=\frac{\mu_{0} I}{2 \pi r}=\frac{(1.26 \mu \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A})(0.37 \mathrm{~A})}{2 \pi(0.25 \mathrm{~m})}=0.3 \mu \mathrm{~T}=3.0 \times 10^{-7} \mathrm{~T}$.

Though it's more precise to write $\mu_{0}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}$, on a calculator it is more convenient to use $\mu_{0}=1.26 \times 10^{-6} \mathrm{Tm} / \mathrm{A}$ or $\mu_{0}=1.26 \mu \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}$.
6. This circular loop of wire has a radius of 0.16 m , and carries a current of 0.45 A counter-clockwise (as seen from above). What is the magnetic field (magnitude and direction) at the star, a distance of 0.27 m above the center of the circle?
The field a distance z above the center of a loop of wire with radius R is
 $\vec{B}=\frac{\mu_{0} I R^{2}}{2\left(z^{2}+R^{2}\right)^{3 / 2}}=\frac{(1.26 \mu \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A})(0.45 \mathrm{~A})(0.16 \mathrm{~m})^{2}}{2\left[(0.27 \mathrm{~m})^{2}+(0.16 \mathrm{~m})^{2}\right]^{3 / 2}}=0.23 \mu \mathrm{~T}$ upward.

If you used $\frac{\mu_{0} I R^{2}}{2 z^{3}}$, you were assuming that z is much larger
A lot of people missed the instruction to include the direction of the field. Use a circle-line RHR to find it. than R, and you got the answer $0.37 \mu \mathrm{~T}$. This isn't particularly close, so apparently that assumption is false.
7. The grey area contains a magnetic field of $3.9 \times 10^{-2} \mathrm{~T}$ which points into the page. $\mathrm{A}+47 \mu \mathrm{C}$ charge with a mass of $2.5 \times 10^{-9} \mathrm{~kg}$ is moving at $350 \mathrm{~m} / \mathrm{s}$ upward. What is the force (magnitude and direction) on the charge due to the magnetic field?

The force on a charge in a magnetic field is equal to $F=q v B$ if the charge is moving perpendicular to the field. Thus
$F=(47 \mu \mathrm{C})(350 \mathrm{~m} / \mathrm{s})\left(3.9 \times 10^{-2} \mathrm{~T}\right)=\mathbf{6 . 4} \times \mathbf{1 0}^{-4} \mathbf{N}$
To find the direction we use the "qvB right-hand rule": fingers point to the right, palm points into the page, thumb points up. Thus the force points leftward (perpendicular to both field and motion).
8. In the picture above, the charge will start spinning in a circle. What will be the radius of the circle? And will the charge spin clockwise \circlearrowright or counterclockwise \circlearrowright ?

The force will cause the charge to turn to the left, and it will keep turning to the left, taking a counterclockwise path. The radius of the circle is given by
$r=\frac{m v}{q B}=\frac{\left(2.5 \times 10^{-9} \mathrm{~kg}\right)(350 \mathrm{~m} / \mathrm{s})}{(47 \mu \mathrm{C})\left(3.9 \times 10^{-2} \mathrm{~T}\right)}=\mathbf{0 . 4 8} \mathbf{m}$ or 48 cm.

