Physics 102 Homework \#2 first draft due Wednesday, February 1 It final draft due Sunday, February 5th

1. What is the period of a pendulum with a 5 kg bob and a 0.7 m -long string?
$T=2 \pi \sqrt{\frac{L}{g}}=2 \pi \sqrt{\frac{0.7}{9.8}}=\mathbf{1 . 7 s}$.
2. A 0.85 kg block on a spring is oscillating with an amplitude of $A=0.42 \mathrm{~m}$ and a frequency of $f=3.5 \mathrm{~Hz}$.
a. What is the spring constant of the spring?

$f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}} \Longrightarrow k=(2 \pi f)^{2} m=(2 \pi)^{2}(3.5)^{2}(0.85)=\mathbf{4 1 1} \mathbf{N} / \mathbf{m}$.
b. What is the fastest speed the block attains, and when does it attain it?
$v_{\max }=2 \pi A f=(2 \pi)(0.42)(3.5)=\mathbf{9 . 2 m} / \mathbf{s}$. It moves its fastest at the equilibrium point.
c. What is the total energy of the block during its oscillation?
$E_{\text {tot }}=\frac{1}{2} k A^{2}=\frac{1}{2}(411)(0.42)^{2}=\mathbf{3 6 . 3 J}$.
3. This is a graph of a wave moving with $7.2 \mathrm{~m} / \mathrm{s}$ at time $t=0$.

a. What is the amplitude of the wave?

$$
A=\mathbf{1 0}
$$

b. What is the wavelength of the wave?

$$
\lambda=\mathbf{2 . 5 m}
$$

This is a snapshot graph, so we can read the wavelength right off the graph.
c. What is the period of the wave?

$$
v=\frac{\lambda}{T} \Longrightarrow T=\frac{\lambda}{v}=\frac{2.5}{7.2}=\mathbf{0 . 3 5} \mathbf{s}
$$

d. What is the frequency of the wave?

$$
v=\lambda f \Longrightarrow f=\frac{v}{\lambda}=\frac{7.2}{2.5}=2.9 \mathbf{H z} . \quad \text { or } f=\frac{1}{T}=\frac{1}{0.35}=2.9 \mathrm{~Hz} .
$$

4. Suppose these two pulses overlap in a medium.

Note that this is a snapshot graph with x on the horizontal axis.
Constructive
a. Fill in the table with the total displacement y_{T} at $x=0,1, \ldots, 8$. (I've filled in a few.)
b. In the next column, write a \mathbf{C} if there is constructive interference going on, \mathbf{D} if destructive, and \mathbf{N} if neither.
c. Use the numbers from the table to draw the superposition of the two pulses in the blank graph below.

x	(a) y_{T}	(b) C/D Interference?
0	0	N
1	-1	D
2	0	D
3	-1	D
4	0	D
5	3	D
6	4	C
7	2	N
8	0	N

