Physics 102 Homework \#3

first draft due Wednesday, February 8th
final draft due Sunday, February 12th

1. Two speakers are 4.5 meters apart, in phase, and produce a single sound wave with wavelength $\lambda=0.8 \mathrm{~m}$. Three points labelled A, B, and C are $4.0 \mathrm{~m}, 8.0 \mathrm{~m}$, and 12.0 m below the speaker on the left, as shown. Fill in the table with the required information, and indicate whether the point sees Constructive or \mathbf{D} estructive interference. (Hint: remember the Pythagorean theorem!)

2. The figure shows a standing wave that is 0.6 m long. The frequency of this standing wave is 400 Hz .
a. What is the wavelength of this wave?

b. What is the fundamental frequency f_{1} of this string?
c. How fast would a wave travel on this string?
3. This standing wave has a frequency of 150 Hz . The waves on this spring travels at $90 \mathrm{~m} / \mathrm{s}$. What is the wavelength of this wave?
4. A car is driving away at $30 \mathrm{~m} / \mathrm{s}$ from a speaker that is generating a 550 Hz sound. What frequency does the driver of the car hear? The speed of sound in air is $343 \mathrm{~m} / \mathrm{s}$.

550 Hz

