Physics 102 Homework #3

first draft due Wednesday, February 8th final draft due Sunday, February 12th

1. Two speakers are 4.5 meters apart, in phase, and produce a single sound wave with wavelength $\lambda = 0.8m$. Three points labelled A, B, and C are 4.0m, 8.0m, and 12.0m below the speaker on the left, as shown. Fill in the table with the required information, and indicate whether the point sees **C**onstructive or **D**estructive 4.5m interference. (Hint: remember the Pythagorean theorem!) 1

						_ T	
	L_1	L_2	$\Delta L = L_1 - L_2 $	$\frac{\Delta L}{\lambda}$	C/D	4m	
Α	4.0	6.0	2.0	2.5	D	Ŧ	A A
В	8.0	9.2	1.2	1.5	D	4m	
С	12.0	12.8	0.8	1.0	С	4m	B <u>Hint:</u> Remember the Pythagorean
	2 points	for these	2	points for	r these		$c^2 = a^2 + b^2$

2. The figure shows a standing wave that is 0.6m long. The frequency of this standing wave is 400Hz.

a. What is the wavelength of this wave?

The mode of this standing wave is n = 5, so the wavelength is $\lambda_5 = \frac{2L}{n} = \frac{1.2}{5} = 0.24$ m.

b. What is the fundamental frequency f_1 of this string? The fundamental frequency is $f_1 = \frac{f_n}{n} = \frac{400 \text{Hz}}{5} = 80 \text{Hz}.$

c. How fast would a wave travel on this string? $v = \lambda_n f_n = (0.24 \text{m})(400 \text{Hz}) = 96 \text{m/s}.$

3. This standing wave has a frequency of 150Hz. The waves on this spring travel at 90m/s. What is the wavelength of this wave?

 $\lambda_n = \frac{v}{f_n} = \frac{90 \text{m/s}}{150 \text{Hz}} = 0.6 \text{m}.$

4. A car is driving away at 30m/s from a speaker that is generating a 550Hz sound. What frequency does the driver of the car hear? The speed of sound in air is 343m/s.

The formula we want is $f_{obs} = f_{src} \frac{v_w \mp v_{obs}}{v_w \pm v_{src}}$. In this formula, $f_{src} = 550$ Hz and $v_w = 343$ m/s. The observer (the car) is moving but the source is stationary, so $v_{src} = 0$ and $v_{obs} = 30$ m/s. They are moving away from each other, so we use the top sign:

 $f_{obs} = (550) \frac{343 - 30}{343} =$ **502Hz.**

The observed frequency is lower than the source frequency, which is what we exist when they move apart.