Physics 102 Homework \#4
 first draft due Wednesday, February 15th
 final draft due Sunday, February 19th

1a. If a machine makes a sound that has an intensity of $I=6 \times 10^{-7} \mathrm{~W} / \mathrm{m}^{2}$ where you are (2 meters from the machine), how many decibels is it?

$$
\begin{aligned}
& \text { The formula for decibels: } \\
& \begin{aligned}
& \beta=10\left(\log _{10} I+12\right) \\
&=10\left(\log _{10}\left(6 \times 10^{-7}\right)+12\right) \\
&=10(-6.22+12) \\
&=\mathbf{5 7 . 8 d B} .
\end{aligned}
\end{aligned}
$$

Note: the $\log _{10}$ of a number in scientific notation will be close to its exponent: thus $\log _{10} 6 \times 10^{-7}=-6.2 \approx-7$. Some people treated this logarithm as a very small number, which it is not. Logarithms are weird that way.

1b. If I add a second machine at the same place, how many decibels will I hear then? The intensity would double:
$\beta=10\left(\log _{10} 2 I+12\right)=10(-5.92+12)=\mathbf{6 0 . 8 d B}$.
Or using the book's explanation, the decibel level of 2 such machines is $\beta_{2}=\beta_{1}+10 \log _{10} 2=57.8 \mathrm{~dB}+3.0 \mathrm{~dB}=\mathbf{6 0 . 8 d B}$.

1c. If I turn the second machine off, and step backwards until I am 4 meters away from the machine, how many decibels do I hear?

According to the book,

$$
\beta\left(r^{\prime}\right)=\beta(r)-20 \log _{10} \frac{r^{\prime}}{r} .
$$

In this case, the original position is $r=2 \mathrm{~m}$ and the new position is $r^{\prime}=4 \mathrm{~m}$, so the decibel value at r^{\prime} is
$\beta(4 \mathrm{~m})=\beta(2 \mathrm{~m})-20 \log _{10} \frac{4 \mathrm{~m}}{2 \mathrm{~m}}=57.8 \mathrm{~dB}-20 \log _{10} 2=57.8-6.0=51.8 \mathbf{d B}$.
Or...intensity depends on the distance squared from the source, so if you move twice as far away, the intensity drops by $2^{2}=$ one-fourth of the original. Then $\beta(4 \mathrm{~m})=(10 \mathrm{~dB})\left(\log _{10} \frac{6 \times 10^{-7}}{4}+12\right)=51.8 \mathrm{~dB}$.

2a. Blue laser light (400 nm) shines through two narrow vertical slits that are 0.3 mm apart, onto a screen that is 5 meters away. How far apart are the dots from one another?

$$
\Delta y=\frac{\lambda L}{d}=\frac{\left(400 \times 10^{-9}\right)(5)}{0.3 \times 10^{-3}}=6.67 \times 10^{-3} \mathrm{~m}=\mathbf{6 . 6 7} \mathbf{m m} .
$$

If y'all can tell me why some of y'all are writing " 4.6 " for L instead of " 5 ", I'd be most obliged. Can't figure it out...

2b. If we add a few more slits as shown, how far apart would the dots be then? The dots would be at exactly the same positions, only smaller. Thus $\Delta y=6.67 \mathrm{~mm}$.

Some people tried to calculate d by taking the total width of the lines $(0.9 \mathrm{~mm})$ divided by the number of lines (4), to get $d=0.9 / 4=0.225 \mathrm{~mm}$ instead of 0.3 mm . This procedure works fine if there are a lot of lines, but if we know the actual distance between each pair of lines, it's better to just use that.
3. Red laser light (633 nm) shines through a single slit onto a screen that is 3 meters away, and creates the pattern shown. How wide is the slit, in millimeters?

This is diffraction from a single slit, so we label the dark spots.
The distance from the center $(0.6 \mathrm{~cm})$ to the first dark spot $(0.8 \mathrm{~cm})$ is $y_{p=1}=0.2 \mathrm{~cm}=0.2 \times 10^{-2} \mathrm{~m}$. Since $L=3 \mathrm{~m}$ and $\lambda=633 \mathrm{~nm}$, we have
$y_{p}=\frac{p \lambda L}{a} \Longrightarrow a=\frac{p \lambda L}{y_{p}}=\frac{1\left(633 \times 10^{-9} \mathrm{~m}\right)(3 \mathrm{~m})}{0.2 \times 10^{-2} \mathrm{~m}}=9.49 \times 10^{-4} \mathrm{~m}=\mathbf{0 . 9 4 9} \mathbf{m m}$.

I've been seeing people writing " $6.33 \times 10^{-7} \mathrm{~m}$ " for the laser light, and while this is true, there's no reason we can't just keep it as " $633 \times 10^{-9} \mathrm{~m}$ " and one very good reason to do so: one less potential error! Don't worry about standardizing scientific notation if you're just going to plug it into your calculator.
4. A visible-light telescope ($\lambda=500 \mathrm{~nm}$) can barely distinguish between a pair of binary stars which are 5×10^{-6} radians apart. What is the diameter of the telescope's opening?

The minimum angular separation between two objects (in $\underline{\text { radians }}$) that can be determined is $\theta=1.22 \frac{\lambda}{D}$.
Thus $\theta=1.22 \frac{\lambda}{D} \Longrightarrow D=1.22 \frac{\lambda}{\theta}=1.22 \frac{500 \times 10^{-9}}{5 \times 10^{-6}}=\mathbf{0 . 1 2 m}$.

