## Physics 102 Homework \#5

first draft due Wednesday, February 18th final draft due Sunday, March 5th

1a. A light ray with wavelength $\lambda=500 \mathrm{~nm}$ moves through air at speed $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. It then enters glass which has an index of refraction of $n=1.53$. What is the speed of light in this glass?

$$
v=\frac{c}{n}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.53}=\mathbf{1 . 9 6} \times \mathbf{1 0}^{8} \mathbf{m} / \mathrm{s}
$$

The $\lambda$ is a red herring here; it doesn't matter to the solution.
1b. If light in a certain material moves at $9 \times 10^{7} \mathrm{~m} / \mathrm{s}$, what would the material's index of refraction be?

$$
n=\frac{c}{v}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{9 \times 10^{7} \mathrm{~m} / \mathrm{s}}=\mathbf{3 . 3 3}
$$

2. A ray of light in glass $\left(n_{1}=1.5\right)$ enters another material $\left(n_{2}\right)$ at a $70^{\circ}$ angle; and emerges into the new material at a $45^{\circ}$ angle. Find the index $n_{2}$.

We need to use Snell's Law here:

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

$$
\Longrightarrow 1.50 \sin 70^{\circ}=n_{2} \sin 45^{\circ}
$$

$$
\Longrightarrow n_{2}=1.50 \frac{\sin 70^{\circ}}{\sin 45^{\circ}}=\mathbf{2 . 0}
$$



- If you had 1.36, you used radians instead of degrees. Careful!
- There seems to be some confusion as to which line is the normal.
- Also, make sure the index and the angle from a given material are on the same side of the equation.

3. A ray of light in air hits the surface of glass $(\mathrm{n}=1.5)$ at a $40^{\circ}$ angle with respect to the normal. Find the angle between the normal and the ray that travels into the glass. Which of the rays shown, A or B , best represents the correct transmitted ray?

We need to use Snell's Law here:

$$
\begin{aligned}
& n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \\
& \Longrightarrow 1.0 \sin 40^{\circ}=1.5 \sin \theta_{2} \\
& \Longrightarrow \sin \theta_{2}=\frac{1.0}{1.5} \sin 40^{\circ}=0.4285 \\
& \Longrightarrow \theta_{2}=\sin ^{-1} 0.4285=25.3^{\circ} \text { or } 0.44 \mathrm{rad}
\end{aligned}
$$



A bends towards the normal, since the index is higher (and the light is slower).
4. A ray of light travels in glass ( $n=1.5$ ), and hits its interface with water $(n=1.3)$. What is the maximum angle $\theta$ that the ray can make with the normal, and still pass through into the water.


We're looking for the critical angle:

$$
\theta_{c}=\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right)=\sin ^{-1}\left(\frac{1.3}{1.5}\right)=60^{\circ} \text { or } 1.05 \mathrm{rad}
$$

Any angle less than this will make it through, into the water.

