Physics 102 Homework \#7 first draft due Wednesday, March 22nd final draft due Sunday, March 26th

1. These two negative charges are 5.1 cm apart. What is the force on the $-1.3 \mu \mathrm{C}$ charge?
Give the magnitude and the direction of the force.

The magnitude of the force on one charge due to another is given by Coulomb's law:

$$
\begin{aligned}
F & =k \frac{\left|q_{A} q_{B}\right|}{d^{2}} \\
& =\left(9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}\right) \frac{\left(1.3 \times 10^{-6} \mathrm{C}\right)\left(4.2 \times 10^{-6}\right)}{\left(5.1 \times 10^{-2} \mathrm{~m}\right)^{2}} \\
& =18.9 \mathrm{~N} .
\end{aligned}
$$

The two charges have the same sign, so the $-1.3 \mu \mathrm{C}$ charge is pushed away from the other charge, or to the left. Thus the force on the charge is $\vec{F}=\mathbf{1 8 . 9 N}$ to the left.
2. $\mathrm{A}+4.0 \mu \mathrm{C}$ charge starts at a distance of 45 cm from a $-7.5 \mu \mathrm{C}$ charge. By how much does the potential energy of this system change when the $+4.0 \mu \mathrm{C}$ charge moves closer, until this is 23 cm away? Include the right sign (positive for an increase, or negative for a decrease).

The change in potential energy is $\triangle P E=P E_{f}-P E_{i}$. The initial potential energy of this configuration is
$P E_{i}=k \frac{q_{1} q_{2}}{d}=\left(9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}\right) \frac{\left(+4.0 \times 10^{-6} \mathrm{C}\right)\left(-7.5 \times 10^{-6}\right)}{\left(45 \times 10^{-2} \mathrm{~m}\right)}=-0.60 \mathrm{~J}$
while the final potential energy is
$P E_{f}=k \frac{q_{1} q_{2}}{d}=\left(9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}\right) \frac{\left(+4.0 \times 10^{-6} \mathrm{C}\right)\left(-7.5 \times 10^{-6}\right)}{\left(23 \times 10^{-2} \mathrm{~m}\right)}=-1.17 \mathrm{~J}$.
Thus the change in potential energy is
$\Delta P E=P E_{f}-P E_{i}=-1.17 \mathrm{~J}-(-0.60 \mathrm{~J})=-\mathbf{0 . 5 7} \mathbf{J}$.
3. $\mathrm{A}-4.2 \mu \mathrm{C}$ charge sits on $\mathrm{a}+3 \mathrm{~V}$ equipotential line.

The potential energy $P E_{T}$ is given by $P E_{T}=q_{T} V$.

$$
P E_{T}=(-4.2 \mu \mathrm{C})(3 \mathrm{~V})=-\mathbf{1 2 . 6} \boldsymbol{\mu} \mathbf{J} .
$$

b. Suppose the charge is given $+5 \mu \mathrm{~J}$ of energy as it is pushed onto the second equipotential line. What is the potential of the second equipotential line?

The change of potential energy is $\triangle P E=+5 \mu \mathrm{~J}$, and so the change in the charge's potential is $\Delta V=\Delta P E / q_{T}=5 \mu \mathrm{~J} /(-4.2 \mu \mathrm{C})=-1.19 \mathrm{~V}$

Since the first line is at +3 V , the second line is at

$$
V=3-1.19=+\mathbf{1 . 8 V} .
$$

(The negative charge moved downhill which it does not want to do, so it requires positive work to move there.)

4a. What is the electric potential 4.8 m from a +63 nC charge? Assume $V_{\infty}=0$.

The potential at the star is $V=k \frac{q}{d}=\left(9 \times 10^{9}\right) \frac{+63 \times 10^{-9}}{4.8}=\mathbf{1 1 8} \mathbf{V}$.

4b. Suppose I had a negative charge, $q=-52 \mathrm{nC}, 2.5 \mathrm{~m}$ below the target. What is the potential at the star now?

The potential at the star due to the negative charge is

The total potential at the star is $V=+118-187=\mathbf{- 6 9 V}$.

