Physics 102 Homework #8

first draft due Wednesday, March 29th final draft due Sunday, April 2nd

1a. This resistor has a resistance of 480Ω , and 32mA of current flows to the left into it. The right end of the resistor is at a potential of $V_R = 12.5\text{V}$. What is the potential difference ΔV across the resistor?

The potential difference across a resistor is given by Ohm's Law: $\Delta V = IR = (32\text{mA})(480) = 15.4\text{V}.$

1b. What is the potential V_L of the left end of the resistor?

The potential on the left side must be smaller than 12.5V by that amount, or 12.5V - 15.4V = -2.9V.

1c. What is the power output by the resistor?

The power output by a resistor can be calculated several ways, all giving the same answer: $P = I^2 R = (32 \times 10^{-3} \text{A})^2 (480 \Omega) = 0.49 \text{W}.$

 $P = I\Delta V = (32 \times 10^{-3} \text{A})(15.4 \text{V}) = 0.49 \text{W}.$

 $P = \frac{(\Delta V)^2}{R} = \frac{(15.4 \text{V})^2}{480\Omega} = 0.49\text{W}.$

1d. What is the current that flows out of the resistor?

The current that flows into the resistor is the same as the current that flows out of it: 32mA.

2. A 12V battery makes 1.5A of current through a 4Ω , 3Ω , and a 1Ω resistor.

a. How much power does the battery supply?

The power supplied by a battery is $P = I\Delta V$ where I=1.5A and $\Delta V = 12V$, the potential difference across the battery. Thus

P = (1.5A)(12V) = 18W

2b. How much power is dissipated by the 4Ω resistor? The power output by a resistor is given by the formulas $P = I\Delta V$, $P = I^2 R$, or $P = \frac{(\Delta V)^2}{R}$. But we don't know the potential difference across the 4Ω resistor, but we do know the current. Thus we'll use the second equation: $P = I^2 R = (1.5)^2 (4) = 9W$

2c. If the potential at the negative end of the battery is 0V, what is the potential *V* at the star?

The potential at the top-left corner of the circuit is 12V higher than 0V, so 12V. The potential drop across the 3Ω resistor is $\Delta V = IR = (1.5)(3) = 4.5V$. Thus the potential at the star is 12V-4.5V = 7.5V.

3. A battery causes 0.35A of current to flow through two resistors, 70Ω and 120Ω . What is the emf of the battery?

The potential drop across the 70 Ω resistor is $\Delta V = (0.35 \text{A})(70 \Omega) = 24.5 \text{V}$, and the potential drop across the 120 Ω resistor is $\Delta V = (0.35 \text{A})(120 \Omega) = 42 \text{V}$. The total drop across both resistors is 24.5 + 42 = **66.5 V**, and so this must be equal to the <u>rise of the potential through the battery</u>: in other words, its **emf.**