Physics I 02 Homework \#9
 first draft due Wednesday, April 12th final draft due Sunday, April 16th

1. Find the current in this circuit.

2. Consider this circuit.
a) Write a junction rule equation for the junction marked (a).
b) Write a loop rule equation for the loop marked (b).

(b)
c) Find the current I_{A}.

3a. Write a junction rule equation for this circuit.

3b. Write two loop rule equations for this circuit.

3c. Use your equations to solve for I_{1}, I_{2}, and I_{3} in this circuit, and fill in the table.

I_{1}	
I_{2}	
I_{3}	

4. Real batteries have an internal resistance r in addition to its emf \mathscr{E}. Suppose we have a real battery with $\mathscr{E}=9 \mathrm{~V}$ and an internal resistance $r=5 \Omega$.
a. What is the potential difference $\Delta \mathrm{V}$ across the ends of this battery, as a function of the current I through it?

b. What is the maximum amount of current $I_{\text {max }}$ that can be produced by this battery?
c. The power output of the battery is $P=I \Delta V$. The maximum power output by the battery when $I=\frac{1}{2} I_{\max }$. Find the maximum power output of the battery.

5a. What is the equivalent resistance of these two resistors?

$\mathbf{5 b}$. Use the equivalent resistance to find the current through the 6 V battery.
6. What is the equivalent resistance of this set of resistors? Use resistance reduction.

