Physics 102 Homework #9 first draft due Wednesday, April 12th final draft due Sunday, April 16th

1. Find the current in this circuit.

- **2.** Consider this circuit.
- **a**) Write a junction rule equation for the junction marked (a).
- **b**) Write a loop rule equation for the loop marked (b).

c) Find the current I_A .

3a. Write a junction rule equation for this circuit.

3b. Write two loop rule equations for this circuit.

3c. Use your equations to solve for I_1 , I_2 , and I_3 in this circuit, and fill in the table.

- **4.** Real batteries have an internal resistance *r* in addition to its emf \mathscr{C} . Suppose we have a real battery with $\mathscr{C} = 9V$ and an internal resistance $r = 5\Omega$.
- **a.** What is the potential difference ΔV across the ends of this battery, as a function of the current *I* through it?

b. What is the maximum amount of current I_{max} that can be produced by this battery?

c. The power output of the battery is $P = I\Delta V$. The maximum power output by the battery when $I = \frac{1}{2}I_{\text{max}}$. Find the maximum power output of the battery.

5a. What is the equivalent resistance of these two resistors?

5b. Use the equivalent resistance to find the current through the 6V battery.

6. What is the equivalent resistance of this set of resistors? Use resistance reduction.

