
PHYS 2140 Exam 1A Solutions
September 24, 2025

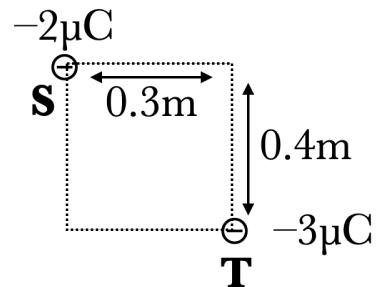
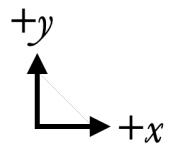
[2] 1. **A** If a neutral atom loses an electron, it becomes
A) positively charged B) negatively charged

2. Consider a charge $q_A = +5 \times 10^{-6} \text{ C}$ which is 0.5 m above a charge $q_B = -3 \times 10^{-6} \text{ C}$.

(a) **C** Which charge feels the greater force?
A) charge A B) charge B
C) both feel the same force

[2] (b) **A** In what direction does charge B feel a force?
A) upward B) downward

[4] (c) What is the magnitude $|\vec{F}|$ of the force that charge B feels?



$$\begin{aligned} |\vec{F}| &= k \frac{|q_A q_B|}{d^2} \\ &= (9 \times 10^9) \frac{(5 \times 10^{-6})(3 \times 10^{-6})}{(0.5)^2} \\ &= [0.54 \text{ N}] \end{aligned}$$

3. Consider a charge $q_S = -2 \times 10^{-6} \text{ C}$ on the upper-left corner of a 0.3 m by 0.4 m rectangle. A $q_T = -3 \times 10^{-6} \text{ C}$ charge is on the lower-right corner of the rectangle, as shown. We want to find the force on the charge q_T .

4

(a) **C** Which of these is \vec{d} , the vector from the source to the target?

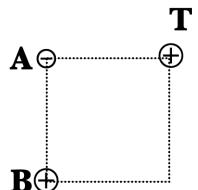
A) $0.3\hat{x} + 0.4\hat{y}$ B) $-0.3\hat{x} + 0.4\hat{y}$
 C) $0.3\hat{x} - 0.4\hat{y}$ D) $-0.3\hat{x} - 0.4\hat{y}$

4

(b) **C** What's the magnitude $|\vec{F}|$ of the force on T?

A) 0.11 N B) 0.16 N C) 0.22 N D) 0.43 N

Now $d = |\vec{d}| = \sqrt{(0.3)^2 + (0.4)^2} = 0.5 \text{ m}$.


$$|\vec{F}| = k \frac{|q_S q_T|}{d^2}$$

$$= (9 \times 10^9) \frac{(2 \times 10^{-6})(3 \times 10^{-6})}{(0.5)^2} = \boxed{0.22 \text{ N}}$$

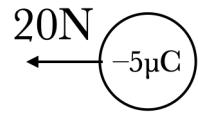
4

4. **B** Consider three charges on a rectangle as shown. If the force on charge T from charge A is $\vec{F}_A = -5\hat{x}$, and the force on T from B is $\vec{F}_B = 3\hat{x} + 4\hat{y}$, what is the magnitude of the net force on T: $|\vec{F}_T|$. (Hint: don't overthink this!)

A) 0 N B) 4.5 N C) 8.9 N D) 10 N E) 12 N

$$\vec{F}_T = \vec{F}_A + \vec{F}_B$$

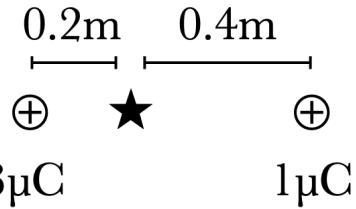
$$= -5\hat{x} + (3\hat{x} + 4\hat{y})$$


$$= -2\hat{x} + 4\hat{y}$$

$$|\vec{F}_T| = \sqrt{2^2 + 4^2} = \sqrt{20} = 4.5 \text{ N}$$

4

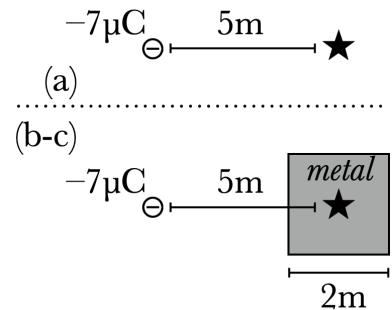
5. **F** A $-5\ \mu\text{C}$ charge feels a force of 20 N to the left in an electric field. What is the electric field it experiences?


A) $2.5 \times 10^{-7}\ \text{N/C} \leftarrow$ B) $1 \times 10^{-4}\ \text{N/C} \leftarrow$ C) $4 \times 10^6\ \text{N/C} \leftarrow$
 D) $2.5 \times 10^{-7}\ \text{N/C} \rightarrow$ E) $1 \times 10^{-4}\ \text{N/C} \rightarrow$ F) $4 \times 10^6\ \text{N/C} \rightarrow$

$$\begin{aligned}\vec{E} &= \frac{\vec{F}}{q} \\ &= \frac{20\ \text{N} \leftarrow}{-5 \times 10^{-6}\ \text{C}} \\ &= -4 \times 10^6\ \text{N/C} \leftarrow \\ &= 4 \times 10^6\ \text{N/C} \rightarrow\end{aligned}$$

4

6. What is the electric field at the star between these two charges?
 Give your answer with at least two significant digits.

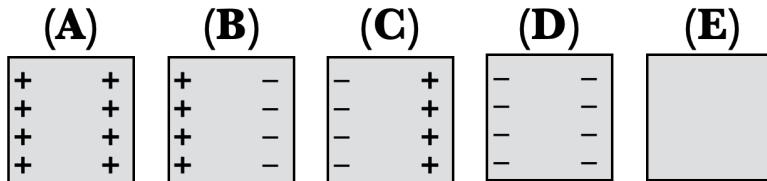

Assume $+\hat{x}$ points to the right.

$$\begin{aligned}\vec{E} &= \vec{E}_L + \vec{E}_R \\ &= (9 \times 10^9) \frac{3 \times 10^{-6}}{(0.2)^2} (+\hat{x}) + (9 \times 10^9) \frac{1 \times 10^{-6}}{(0.4)^2} (-\hat{x}) \\ &= 6.75 \times 10^5 \hat{x} - 0.562 \times 10^5 \hat{x} \\ &= \boxed{6.2 \times 10^5\ \text{N/C} \rightarrow}\end{aligned}$$

4

7. Consider a $-7\mu\text{C}$ source charge.

(a) What is the electric field at the star, 5 meters away? Include magnitude AND direction (i.e. left, right, etc)



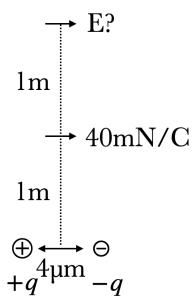
$$\vec{E} = (9 \times 10^9) \frac{-7 \times 10^{-6}}{(5)^2} \rightarrow$$

$$= 2520 \text{ N/C} \leftarrow$$

2

(b) **B** Now suppose a neutral metal cube with a side of 2 meters is centered on the star. How does charge distribute itself on the surface of the cube?

2


(c) **D** Compared to your answer in part (a), the electric field at the star inside the cube

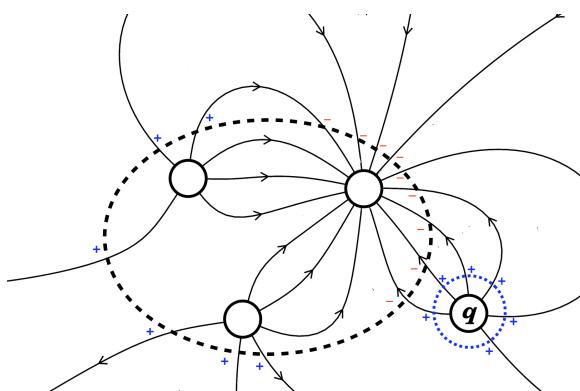
A) is stronger **B**) is the same
C) is weaker but not zero **D**) is zero

8. Consider two charges, $+q$ and $-q$, which are 4 microns apart. The electric field a distance 1 meter above the center of these charges is 40 mN/C. (Yes, a meter is much larger than a micron.)

4

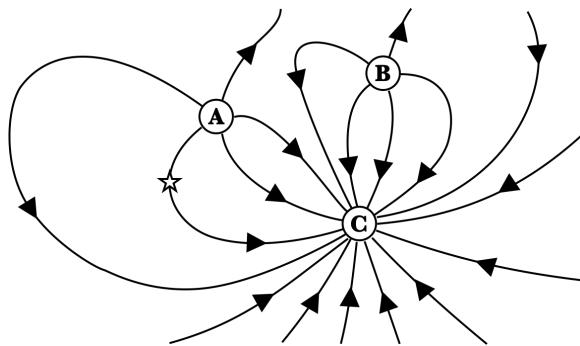
(a) A What is the electric field 2 meters above the center of these charges?
 A) 5 mN/C B) 10 mN/C C) 20 mN/C D) 40 mN/C E) 80 mN/C

The electric field of a dipole (two equal and opposite charges) dies away as $1/d^3$.


2

(b) What is the name of this charge configuration?

dipole


4

9. D The figure shows some field lines created by the charges shown. A Gaussian (i.e. imaginary) surface is drawn on the figure. If the charge q in the figure is equal to $+6 \mu\text{C}$, then the total charge inside the Gaussian surface is
 A) $+3 \mu\text{C}$ B) $+6 \mu\text{C}$ C) $+18 \mu\text{C}$
 D) $-3 \mu\text{C}$ E) $-6 \mu\text{C}$ F) $-18 \mu\text{C}$

A circle around q has a flux $\Phi = +6$. The black circle has $\Phi = +6 - 9 = -3$. The charge inside a circle is proportional to the flux through it, and since the charge inside the blue circle is $+6 \mu\text{C}$, the charge inside the black circle is $-3 \mu\text{C}$.

10. Consider the field lines created by these three charges: A, B, and C.

4

(a) **C** Which charge or charges are negative?

- A) A
- B)** B
- C) C
- D) A&B
- E) A&C
- F) B&C
- G) All of them
- H) None of them

4

(b) **C** Which charge has the largest magnitude $|q|$?

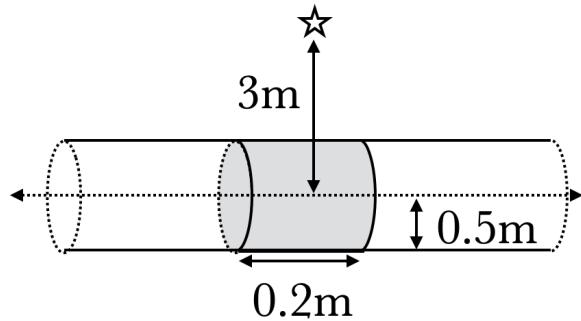
- A) A
- B)** B
- C) C

4

(c) **E** In which direction does the electric field at the star point?

- A) \uparrow
- B)** \nearrow
- C) \rightarrow
- D) \searrow
- E) \downarrow

Tangential to the field line


4

(d) **C** The total charge of these three charges is

- A) positive
- B)** zero
- C) negative

More field lines are coming from off-screen than going off-screen

11. This figure shows an infinite solid cylinder with a charge density of $4 \mu\text{C}/\text{m}^3$ and a radius of $R = 0.5 \text{ m}$

[2]

(a) **C** What symbol should we use to represent this charge density?
A) λ B) σ C) ρ

Solid cylinders include their interior

[4]

(b) **B** What is the total charge of a section of the cylinder that is 0.2 m wide with a volume of 0.157 m^3 ?
A) 39 nC B) $0.63 \mu\text{C}$ C) $6.1 \mu\text{C}$ D) $26 \mu\text{C}$

$$Q = \rho V = (4 \mu\text{C}/\text{m}^3)(0.157 \text{ m}^3) = 0.63 \mu\text{C}$$

[3 XC]

(c) What is the electric field at the star, a distance of 3 m from the axis of the cylinder? Include magnitude AND direction.

The linear charge density of the grey cylinder is $\lambda = \frac{Q}{L} = \frac{0.63 \mu\text{C}}{0.2 \text{ m}} = 3.15 \mu\text{C}/\text{m}$.

$$\begin{aligned} E &= \frac{2k\lambda}{r} \\ &= \frac{2(9 \times 10^9)(3.15 \times 10^{-6})}{3} = \boxed{1.9 \times 10^4 \text{ N/C} \uparrow} \end{aligned}$$