
[2]

1. _____ If a neutral atom loses an electron, it becomes
A) negatively charged **B)** positively charged

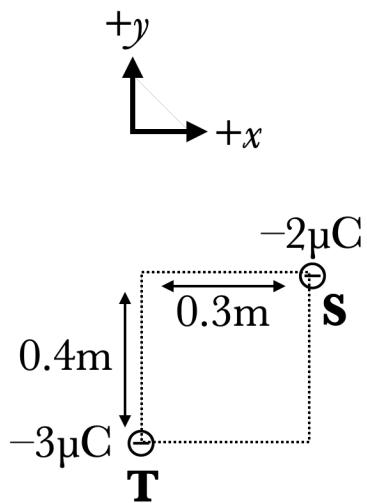
[2]

2. Consider a charge $q_A = +4 \times 10^{-6} \text{ C}$ which is 0.3 m above a charge $q_B = -7 \times 10^{-6} \text{ C}$.

(a) _____ Which charge feels the greater force?
A) charge A **B)** charge B
C) both feel the same force

[2]

(b) _____ In what direction does charge B feel a force?
A) upward **B)** downward

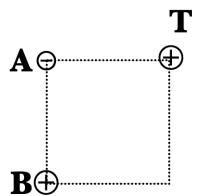

[4]

(c) What is the magnitude $|\vec{F}|$ of the force that charge B feels?

3. Consider a charge $q_S = -2 \times 10^{-6} \text{ C}$ on the upper-right corner of a 0.3 m by 0.4 m rectangle. A $q_T = -3 \times 10^{-6} \text{ C}$ charge is on the lower-left corner of the rectangle, as shown. We want to find the force on the charge q_T .

4 (a) _____ Which of these is \vec{d} , the vector from the source to the target?

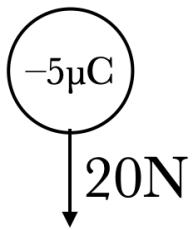
A) $0.3\hat{x} + 0.4\hat{y}$ B) $-0.3\hat{x} + 0.4\hat{y}$
 C) $0.3\hat{x} - 0.4\hat{y}$ D) $-0.3\hat{x} - 0.4\hat{y}$



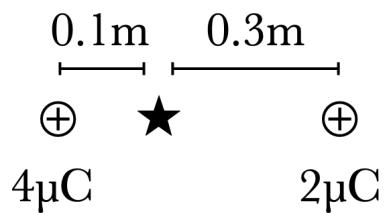
4 (b) _____ What's the magnitude $|\vec{F}|$ of the force on T?

A) 0.11 N B) 0.22 N C) 0.43 N D) 0.64 N

4. _____ Consider three charges on a rectangle as shown. If the force on charge T from charge A is $\vec{F}_A = -5\hat{x}$, and the force on T from B is $\vec{F}_B = 3\hat{x} + 4\hat{y}$, what is the magnitude of the net force on T: $|F_T|$. (Hint: don't overthink this!)

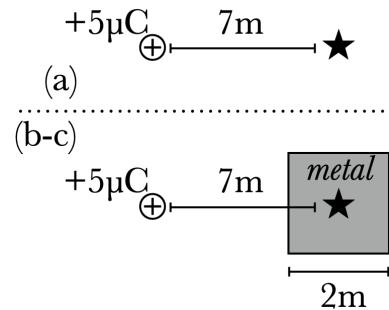

A) 0 N B) 2 N C) 4.5 N D) 8.9 N E) 10 N

4

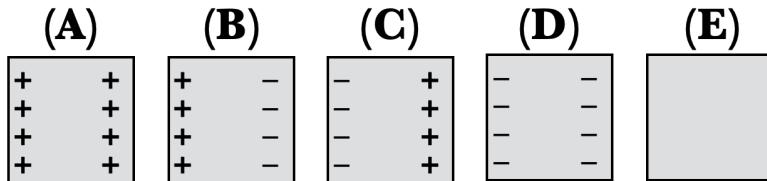

5. _____ A $-5\ \mu\text{C}$ charge feels a force of 20 N downward in an electric field. What is the electric field it experiences?

A) $2.5 \times 10^{-7}\ \text{N/C}\uparrow$ B) $1 \times 10^{-4}\ \text{N/C}\uparrow$ C) $4 \times 10^6\ \text{N/C}\uparrow$
D) $2.5 \times 10^{-7}\ \text{N/C}\downarrow$ E) $1 \times 10^{-4}\ \text{N/C}\downarrow$ F) $4 \times 10^6\ \text{N/C}\downarrow$

4


6. What is the electric field at the star between these two charges?
Give your answer with at least two significant digits.

4

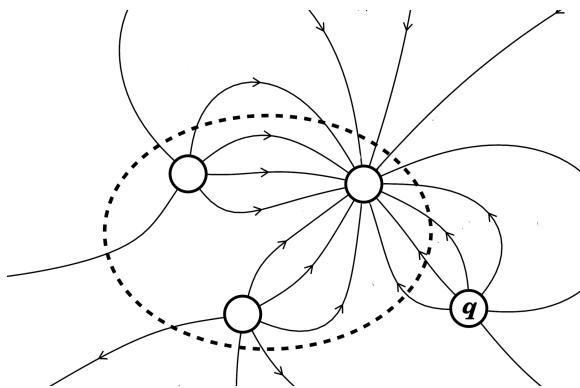

7. Consider a $+5\mu\text{C}$ source charge.

(a) What is the electric field at the star, 7 meters away? Include magnitude AND direction (i.e. left, right, etc)

2

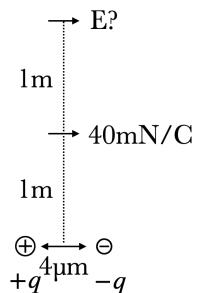
(b) _____ Now suppose a neutral metal cube with a side of 2 meters is centered on the star. How does charge distribute itself on the surface of the cube?

2


(c) _____ Compared to your answer in part (a), the electric field at the star inside the cube

A) is stronger **B)** is the same
C) is weaker but not zero **D)** is zero

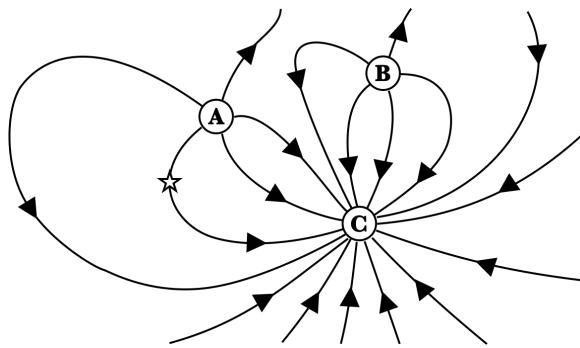
4


8. _____ The figure shows some field lines created by the charges shown. A Gaussian (i.e. imaginary) surface is drawn on the figure. If the charge q in the figure is equal to $+6 \mu\text{C}$, then the total charge inside the Gaussian surface is

A) $+3 \mu\text{C}$ **B)** $+6 \mu\text{C}$ **C)** $+18 \mu\text{C}$
D) $-3 \mu\text{C}$ **E)** $-6 \mu\text{C}$ **F)** $-18 \mu\text{C}$

4

9. Consider two charges, $+q$ and $-q$, which are 4 microns apart. The electric field a distance 1 meter above the center of these charges is 40 mN/C. (Yes, a meter is much larger than a micron.)


(a) _____ What is the electric field 2 meters above the center of these charges?

A) 80 mN/C **B)** 40 mN/C **C)** 20 mN/C **D)** 10 mN/C **E)** 5 mN/C

2

(b) What is the name of this charge configuration?

10. Consider the field lines created by these three charges: A, B, and C.

[4]

(a) _____ Which charge or charges are positive?

- A) A
- B) B
- C) C
- D) A&B
- E) A&C
- F) B&C
- G) All of them
- H) None of them

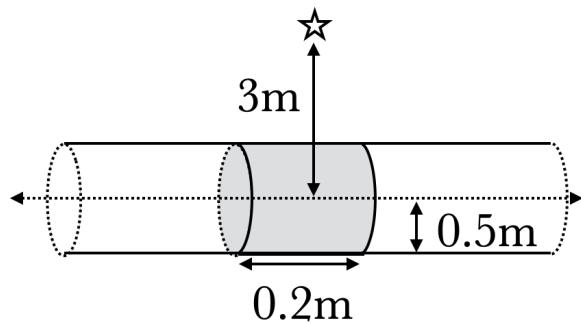
[4]

(b) _____ Which charge has the largest magnitude $|q|$?

- A) A
- B) B
- C) C

[4]

(c) _____ In which direction does the electric field at the star point?


- A) \uparrow
- B) \nearrow
- C) \rightarrow
- D) \searrow
- E) \downarrow

[4]

(d) _____ The total charge of these three charges is

- A) negative
- B) zero
- C) positive

11. This figure shows an infinite cylindrical shell with a charge density of $4\ \mu\text{C}/\text{m}^2$ and a radius of $R = 0.5\ \text{m}$.

2 (a) _____ What symbol should we use to represent this charge density?
A) λ B) σ C) ρ

4 (b) _____ What is the total charge of a section of the cylinder that is $0.2\ \text{m}$ wide with a surface area of $0.628\ \text{m}^2$?
A) $0.16\ \mu\text{C}$ B) $0.64\ \mu\text{C}$ C) $2.51\ \mu\text{C}$ D) $6.4\ \mu\text{C}$

3 XC (c) What is the electric field at the star, a distance of $3\ \text{m}$ from the axis of the cylinder? Include magnitude AND direction.