

PHYS 2140 Exam 2c Solutions

October 23, 2025

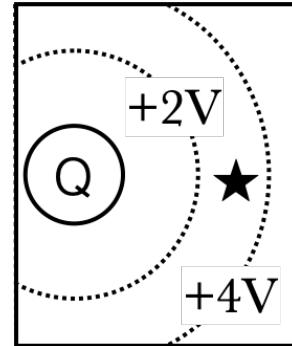
2

1. B If these two charges move closer together, their potential energy
A) increases B) decreases

2

2. The figure shows a charge Q (sign unknown) and two equipotential lines.

2

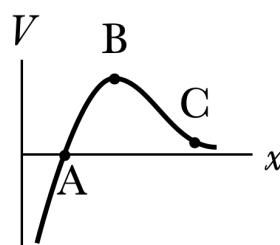

(a) B The charge Q is
A) positive B) negative

2

(b) A What direction does the electric field point at the star?
A) left \leftarrow B) right \rightarrow

2

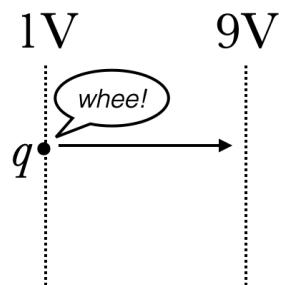
(c) A What is the potential V_∞ at infinity if there are no other charges in the universe?
A) positive B) zero C) negative


3. Here is a graph of the potential along a line.

4

(a) A At which point is the electric field greatest in magnitude?
A) A B) B C) C

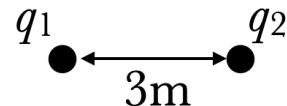
4


(b) B At which point is the electric field zero?
A) A B) B C) C D) None of these

4. A charge q spontaneously moves from 1 V to 9 V.

2 (a) **B** Which could be the charge q ?
 A) $+3\ \mu\text{C}$ B) $-3\ \mu\text{C}$

4 (b) **A** What is the change in the potential energy of this charge?
 A) $-24\ \mu\text{J}$ B) $-0.37\ \mu\text{J}$ C) $+0.37\ \mu\text{J}$ D) $+24\ \mu\text{J}$

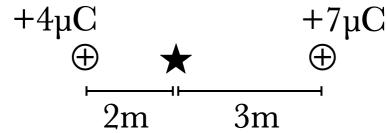

4 5. **D** Two charges are 3 m apart, they are $q_1 = 5\ \mu\text{C}$ and $q_2 = -6\ \mu\text{C}$. What is the potential energy of the two charges?

A) $-30\ \text{mJ}$ B) $-4\ \text{kJ}$ C) $-6\ \text{kJ}$ D) $-90\ \text{mJ}$

$$PE = k \frac{q_1 q_2}{d}$$

$$PE = (9 \times 10^9) \frac{(5 \times 10^{-6})(-6 \times 10^{-6})}{3}$$

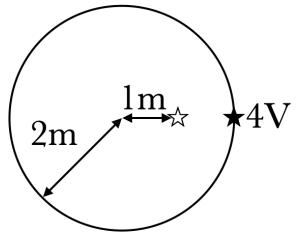
$$= -0.09\ \text{J}$$


4 6. **D** Two positive charges sit on a line as shown. What is the electric potential at the star, assuming $V_\infty = 0$?

A) $50\ \text{mV}$ B) $2\ \text{kV}$ C) $3\ \text{kV}$ D) $39\ \text{kV}$

$$V = (9 \times 10^9) \frac{+4 \times 10^{-6}}{2} + (9 \times 10^9) \frac{+7 \times 10^{-6}}{3}$$

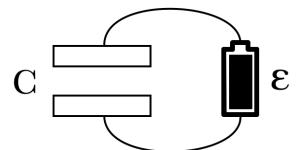
$$= 18,000\ \text{V} + 21,000\ \text{V}$$


$$= 39,000\ \text{V}$$

4

7. C This *conducting* sphere has a radius of 2 m and a net positive charge. The potential at the surface is 4 V. What is the potential 1 m from the center?

A) 0V B) 2V C) 4V D) 8V E) 16V



All points in a conductor are at the same potential.

4

8. This capacitor has a capacitance of $C = 5 \mu\text{F}$. If it is hooked up to a $\mathcal{E} = 9 \text{ V}$ battery,

(a) B what is the charge on the positive plate?
A) 1.8 MC B) 45 μC C) 550 nC

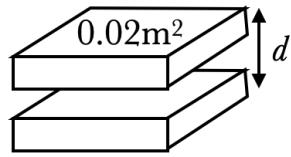
$$Q = C\Delta V = (5 \times 10^{-6})(9) = 45 \times 10^{-6} \text{ C}$$

4

(b) How much energy is stored in this capacitor?

$$PE = \frac{1}{2}C(\Delta V)^2 = \frac{1}{2}(5 \mu\text{F})(9 \text{ V})^2 = 202 \mu\text{C}$$

2


(c) A To increase the capacitance of this capacitor, we should move the plates
A) closer together B) farther apart

2

(d) A If we increase the capacitance of this capacitor while it is connected to the battery, the energy in the capacitor will
A) increase B) decrease

9. These parallel plates have a capacitance of $6 \mu\text{F}$. Each plate has an area of 0.02 m^2 .

[4] (a) What is the distance between the plates?

The capacitance is

$$C = \frac{\epsilon_0 A}{d} \implies d = \frac{\epsilon_0 A}{C} = \frac{(8.85 \times 10^{-12})(0.02)}{6 \times 10^{-6}} = 3.0 \times 10^{-8} \text{ m}$$

[4] (b) **E** If I fill the space between the plates with paper ($\kappa = 5$) what is the capacitance now?

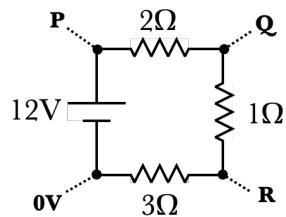
A) $1 \mu\text{F}$ **B)** $1.2 \mu\text{F}$ **C)** $5 \mu\text{F}$ **D)** $6 \mu\text{F}$ **E)** $30 \mu\text{F}$

10. On this wire, the potential on the left is 5 V and the potential on the right is 8 V.

[2] (a) **A** What direction does the conventional current I point?
A) left \leftarrow **B)** right \rightarrow

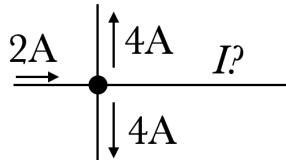
[2] (b) **B** What direction do electrons move inside?
A) left \leftarrow **B)** right \rightarrow

Full credit if opposite (a) and word "opposite" appears


[4] (c) **A** If the current through the wire is 8 mA, what is the resistance of the wire?
A) 375Ω **B)** 1000Ω **C)** 2700Ω **D)** $24 \text{ k}\Omega$

11. Here's a simple loop with three resistors; the current through the battery is $I = 2 \text{ A}$. If the potential at the negative terminal of the battery is zero, find the potential at these three points. (The answers are all integers.)

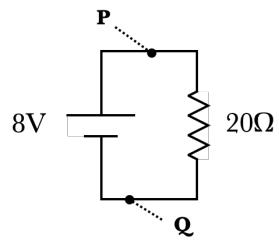
[2] (a) point P: **12**


[2] (b) point Q: **8**

[2] (c) point R: **6**

12. **B** Four wires meet at a junction as shown. What is the current I in the right wire?

A) $2 \text{ A} \leftarrow$ B) $6 \text{ A} \leftarrow$ C) $10 \text{ A} \leftarrow$
 D) $2 \text{ A} \rightarrow$ E) $6 \text{ A} \rightarrow$ F) $10 \text{ A} \rightarrow$

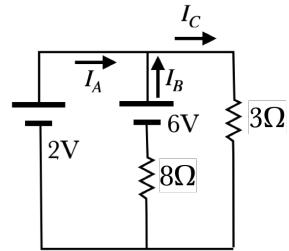


13. **A** A wire has a resistivity of $8 \times 10^{-4} \Omega\text{m}$, a resistance of 7Ω , and a cross-sectional area of $A = 0.02 \text{ m}^2$. How long is the wire? (Remember that $R = \rho L/A$)
 A) $1.8 \times 10^2 \text{ m}$ B) $2.3 \times 10^{-6} \text{ m}$ C) $4.4 \times 10^5 \text{ m}$ D) $5.7 \times 10^{-3} \text{ m}$

$$R = \frac{\rho L}{A} \implies L = \frac{AR}{\rho} = \frac{(0.02)(7)}{8 \times 10^{-4}} = \boxed{175 \text{ m}}$$

14. Consider this battery connected to a resistor. The current through the battery is 0.4 A.

4 (a) **D** What is the power emitted by the resistor?
A) 0.4 W **B**) 1280 W **C**) 240 W **D**) 3.2 W


$$P = \frac{(\Delta V)^2}{R} = \frac{(8)^2}{20} = 3.2 \text{ W}$$

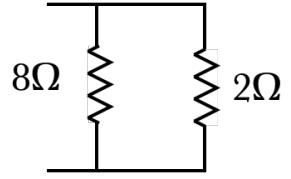
2 (b) **C** Where is the current larger?
A) In wire P **B**) In wire Q
C) Both wires have the same current

15. Consider this circuit.

4 (a) **C** Which of the following is true?
A) $I_A = I_B + I_C$ **B**) $I_B = I_A + I_C$ **C**) $I_C = I_A + I_B$

4 (b) Write a loop rule equation involving the two batteries. (Remember it should equal zero.)

$$+2 - 6 + 8I_B = 0 \quad \text{or} \quad -2 + 6 - 8I_B = 0$$

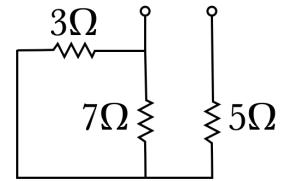

4 (c) Find I_A .

The loop rule from part a let's us show that $4 = 8I_B \implies I_B = \frac{1}{2}$. The large loop around the circuit gives the equation $2 - 3I_C = 0 \implies I_C = \frac{2}{3}$. The junction rule is $I_A + I_B = I_C$,

so $I_A = I_C - I_B = \frac{2}{3} - \frac{1}{2} = \boxed{\frac{1}{6} \text{ A}}$.

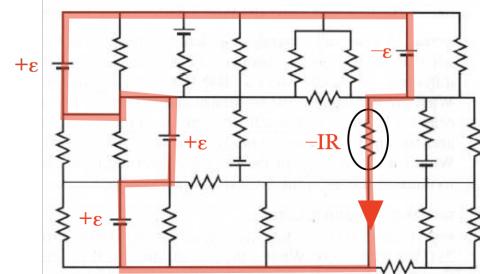
4

16. C What is the equivalent resistance of these two resistors?
 A) 0.1Ω B) 0.63Ω C) 1.6Ω D) 5Ω E) 10Ω


4

17. Consider this set of resistors, with two terminals marked.

4


(a) C Which pair of resistors are in parallel with each other?
 A) 3Ω and 5Ω B) 5Ω and 7Ω C) 3Ω and 7Ω
 D) None of these

(b) E What is the equivalent resistance of this set of resistors?
 A) 1.48Ω B) 3.33Ω C) 5.48Ω
 D) 5.58Ω E) 7.1Ω F) 15Ω

2 XC

18. In this circuit, all the batteries are $9V$ and all the resistors are 3Ω . What is the current through the circled resistor? Include the *direction* (up or down).

There is a simple loop through the resistor which only includes that one resistor. Going clockwise around this loop gives us $+9 + 9 + 9 - 9 - 3I = 0 \Rightarrow 18 = 3I \Rightarrow I = 6A$