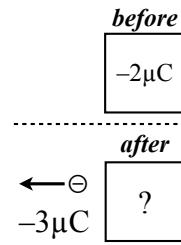
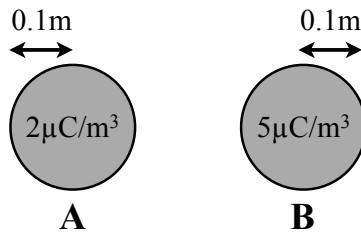


Name: _____

Physics 2140


Sample Exam 1

2025


- Turn off your cellphone.
- Do not cheat, and avoid the appearance of impropriety.
- Materials permitted: one sheet of notes and a calculator.
- This test contains 11 questions and 54 points.
- Ask questions when confused! Remain seated and raise your hand.
- Partial credit is available **everywhere**.
- Show your work!
- Watch the blackboard for any corrections or clarifications.
- Remember units!
- Vectors should be given in component form: $2\hat{x} - 3\hat{y}$, $2\hat{i} - 3\hat{j}$, $\langle 2, -3 \rangle$, etc.
- Use the blank (_____) for your answer when there is one.
- Circle your answer when there isn't a blank.
- Geometric formulae, fundamental constants, and metric prefixes are free for the asking.
- When done, do not stand right outside the door talking about the exam. Please proceed to MH1005 for the lecture during the second hour.
- I will post a notice on the website when the grades are available.

Good luck!

3 1. _____ Consider a box with a net charge of $-2\mu\text{C}$. If $-3\mu\text{C}$ is removed from the box, the box's net charge becomes
A) $-5\mu\text{C}$ **B)** $-1\mu\text{C}$ **C)** $+1\mu\text{C}$ **D)** $+5\mu\text{C}$

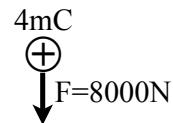
2. Two positively charged solid spheres, each with 10 cm radius, sit side by side. Sphere A has a charge density of $\rho = 2\mu\text{C}/\text{m}^3$; sphere B has a charge density of $\rho = 5\mu\text{C}/\text{m}^3$.



3 (a) _____ What force does sphere A feel, due to sphere B?
A) Force to the left \leftarrow **B)** Force to the right \rightarrow

3 (b) _____ Which sphere feels a greater force?
A) Sphere A **B)** Sphere B **C)** Both feel the same force

3 (c) Find the total charge Q on sphere A.
The surface area of a sphere is $4\pi R^2$ and the volume of a sphere is $\frac{4}{3}\pi R^3$.


3. In the figure shown, find the force on the $+7\mu\text{C}$ charge, in component form (i.e. something like $2\hat{x} + 3\hat{y}$). For partial credit, draw \vec{d} .

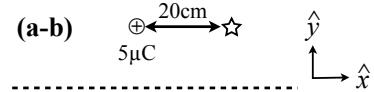
4. A $+4 \times 10^{-3}$ C charge feels an electric force of 8000 N downward.

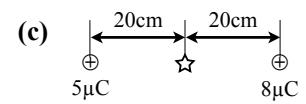
2 (a) _____ The electric field at the charge's location points
A) upward **B)** downward


3 (b) Find the magnitude $|\vec{E}|$ of the electric field at the charge's location.

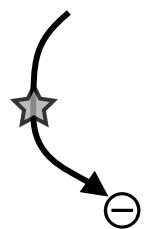
5. Consider a target inside a spherical shell with a uniform positive surface charge density.

3 (a) _____ The electric field at the star
A) points up **B)** is zero **C)** points down

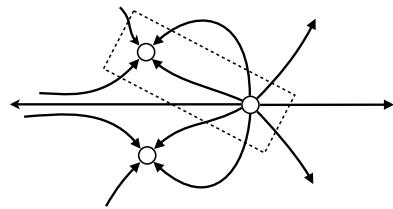

3 (b) _____ If I place a negative charge at the star, it feels
A) an upward force **B)** a downward force **C)** no force


6. Consider a target 0.2 m to the right of a 5×10^{-6} C charge.

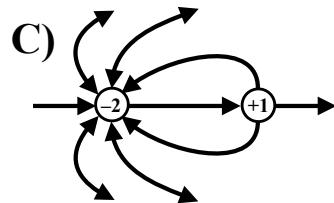
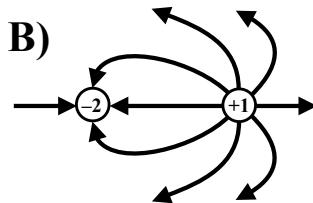
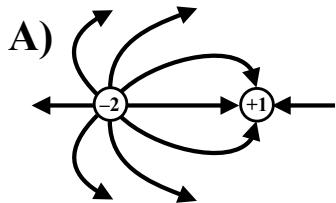
2 (a) _____ What is the direction of \vec{E} at the star?
A) \leftarrow B) \rightarrow


3 (b) Find the electric field \vec{E} (in component form) at the star.

3 (c) Now add an 8×10^{-6} C charge 0.2 m to the right of the star. What is the electric field at the star now?

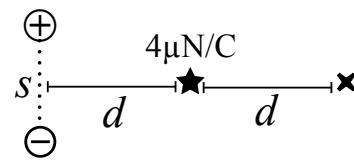


3 7. _____ The figure shows a negative charge, and an electric field line going into that charge. The electric field at the star points in what direction?
A) \uparrow B) \searrow C) \downarrow D) \nwarrow




8. The figure shows the electric field lines of three source charges.

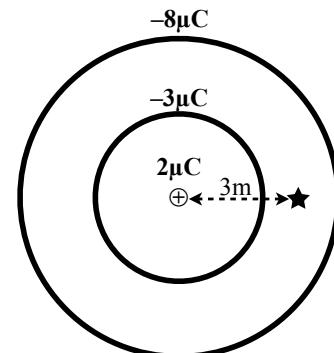
[2] (a) _____ The net flux through the dotted rectangle is
A) positive B) zero C) negative

[2] (b) _____ The net charge of all three charges is
A) positive B) zero C) negative


[3] 9. _____ Consider two charges: a $-2\ \mu\text{C}$ charge on the left, and $+1\ \mu\text{C}$ charge on the right. Which of the following shows the correct electric field lines of these two charges?

D) None of these.

10. The figure shows a dipole, where the two charges are a distance s apart. The electric field d to the right of the dipole is $4 \mu\text{N/C}$. Assume that d is much larger than s .


3 (a) _____ The direction of the electric field at the star points
A) \uparrow B) \rightarrow C) \downarrow D) \leftarrow

3 (b) _____ What is the magnitude of the electric field $2d$ from the dipole (at the X)?
A) $4 \mu\text{N/C}$ B) $2 \mu\text{N/C}$ C) $1 \mu\text{N/C}$ D) $0.5 \mu\text{N/C}$

11. Consider two concentric spherical shells. The outer shell has a radius of 4 m , and a net charge of $-8 \mu\text{C}$ spread evenly on its surface. The inner shell has a radius of 2 m and a net charge of $-3 \mu\text{C}$ spread evenly on its surface. At the center of both spheres is a $2 \mu\text{C}$ point charge. I'm interested in the electric field at the star.

2 (a) _____ The field at the star
A) points to the left B) is zero C) points to the right

2 (b) _____ The field at the star is the same as that 3 m from a point charge q , where $q =$
A) $-1 \mu\text{C}$ B) $2 \mu\text{C}$ C) $-3 \mu\text{C}$ D) $7 \mu\text{C}$ E) $-9 \mu\text{C}$