

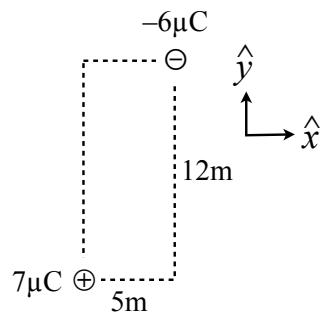
Physics 2140 Sample Exam 1 Solutions

3. **C** 1. Consider a box with a net charge of $-2\mu\text{C}$. If $-3\mu\text{C}$ is removed from the box, the box's net charge becomes
A) $-5\mu\text{C}$ **B)** $-1\mu\text{C}$ **C)** $+1\mu\text{C}$ **D)** $+5\mu\text{C}$

2. Two positively charged solid spheres, each with 10 cm radius, sit side by side. Sphere A has a charge density of $\rho = 2\mu\text{C}/\text{m}^3$; sphere B has a charge density of $\rho = 5\mu\text{C}/\text{m}^3$.

3. (a) **A** What force does sphere A feel, due to sphere B?
A) Force to the left \leftarrow **B)** Force to the right \rightarrow

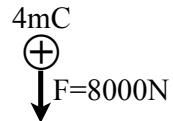
3. (b) **C** Which sphere feels a greater force?
A) Sphere A **B)** Sphere B **C)** Both feel the same force


3. (c) Find the total charge Q on sphere A.
The surface area of a sphere is $4\pi R^2$ and the volume of a sphere is $\frac{4}{3}\pi R^3$.

$$Q = \rho V = (2\mu\text{C}/\text{m}^3) \left(\frac{4}{3}\pi(0.1\text{ m})^3 \right) = [8.4 \times 10^{-3}\mu\text{C}] = 8.4 \times 10^{-9}\text{ C}$$

3. In the figure shown, find the force on the $+7\mu\text{C}$ charge, in component form (i.e. something like $2\hat{x} + 3\hat{y}$). For partial credit, draw \vec{d} .

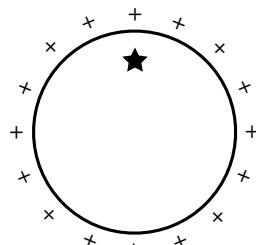
$$\vec{d} = -5\hat{x} - 12\hat{y} \text{ m, and } d = \sqrt{5^2 + 12^2} = 13 \text{ m.}$$


$$\begin{aligned}\vec{F} &= k \frac{q_s q_t}{d^3} \vec{d} \\ &= (9 \times 10^9) \frac{(-6 \times 10^{-6})(7 \times 10^{-6})}{(13)^3} (-5\hat{x} - 12\hat{y}) \\ &= -1.72 \times 10^{-4} (-5\hat{x} - 12\hat{y}) \\ &= [(8.6 \times 10^{-4}\hat{x} + 2.1 \times 10^{-3}\hat{y}) \text{ N}]\end{aligned}$$

4. A $+4 \times 10^{-3} \text{ C}$ charge feels an electric force of 8000 N downward.

2 (a) **B** The electric field at the charge's location points
A) upward B) downward

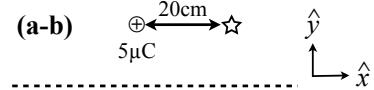
3 (b) Find the magnitude $|\vec{E}|$ of the electric field at the charge's location.



$$E = \frac{F}{q_T} = \frac{8000 \text{ N}}{4 \times 10^{-3} \text{ C}} = 2 \times 10^6 \text{ N/C}$$

5. Consider a target inside a spherical shell with a uniform positive surface charge density.

3 (a) **B** The electric field at the star
A) points up B) is zero C) points down


3 (b) **C** If I place a negative charge at the star, it feels
A) an upward force B) a downward force C) no force

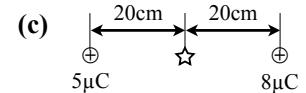
6. Consider a target 0.2 m to the right of a 5×10^{-6} C charge.

2 (a) **B** What is the direction of \vec{E} at the star?
A) \leftarrow **B)** \rightarrow

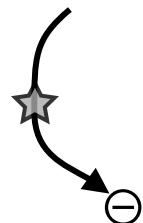
3 (b) Find the electric field \vec{E} (in component form) at the star.

$$\vec{E} = k \frac{q_s}{d^3} \vec{d} = (9 \times 10^9) \frac{5 \times 10^{-6}}{(0.2)^3} (0.2\hat{x})$$

$$= 1.1 \times 10^6 \hat{x} \text{ N/C}$$

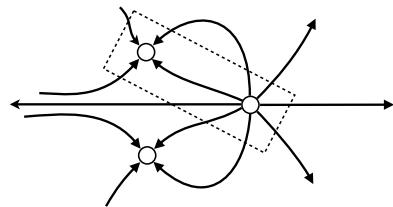

3 (c) Now add an 8×10^{-6} C charge 0.2 m to the right of the star. What is the electric field at the star now?

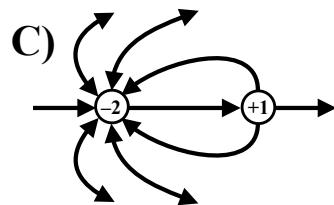
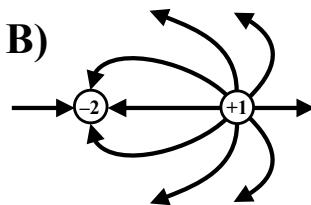
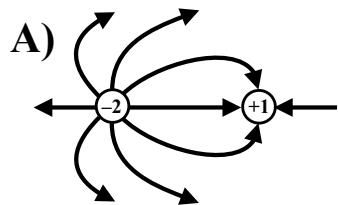
With the $8 \mu\text{C}$ charge as the source, $\vec{d} = -0.2\hat{x}$ m, and


$$\vec{E} = k \frac{q_s}{d^3} \vec{d} = (9 \times 10^9) \frac{8 \times 10^{-6}}{(0.2)^3} (-0.2\hat{x}) = -1.8 \times 10^6 \hat{x} \text{ N/C}$$

The net electric field is the sum of this and the answer to (b):

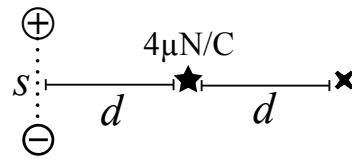
$$(1.1 \times 10^6 \hat{x} - 1.8 \times 10^6 \hat{x}) \text{ N/C} = -7 \times 10^5 \hat{x} \text{ N/C}$$


3 7. **C** The figure shows a negative charge, and an electric field line going into that charge. The electric field at the star points in what direction?
A) \uparrow **B)** \searrow **C)** \downarrow **D)** \nwarrow




8. The figure shows the electric field lines of three source charges.

(a) **A** The net flux through the dotted rectangle is
A) positive B) zero C) negative

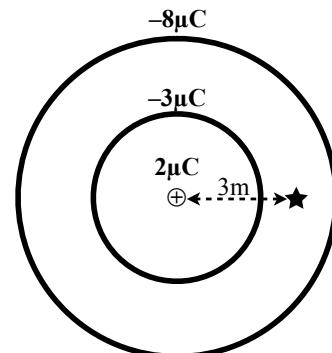
(b) **B** The net charge of all three charges is
A) positive B) zero C) negative


9. **D** Consider two charges: a $-2\ \mu\text{C}$ charge on the left, and $+1\ \mu\text{C}$ charge on the right. Which of the following shows the correct electric field lines of these two charges?

D) None of these.

10. The figure shows a dipole, where the two charges are a distance s apart. The electric field d to the right of the dipole is $4 \mu\text{N/C}$. Assume that d is much larger than s .

3 (a) C The direction of the electric field at the star points
A) \uparrow **B)** \rightarrow **C)** \downarrow **D)** \leftarrow


3 (b) D What is the magnitude of the electric field $2d$ from the dipole (at the X)?
A) $4 \mu\text{N/C}$ **B)** $2 \mu\text{N/C}$ **C)** $1 \mu\text{N/C}$ **D)** $0.5 \mu\text{N/C}$

11. Consider two concentric spherical shells. The outer shell has a radius of 4 m , and a net charge of $-8 \mu\text{C}$ spread evenly on its surface. The inner shell has a radius of 2 m and a net charge of $-3 \mu\text{C}$ spread evenly on its surface. At the center of both spheres is a $2 \mu\text{C}$ point charge. I'm interested in the electric field at the star.

2 (a) A The field at the star
A) points to the left **B)** is zero **C)** points to the right

2 (b) A The field at the star is the same as that 3 m from a point charge q , where $q =$
A) $-1 \mu\text{C}$ **B)** $2 \mu\text{C}$ **C)** $-3 \mu\text{C}$ **D)** $7 \mu\text{C}$ **E)** $-9 \mu\text{C}$

The field is the same as if we collapsed the inner shells to a single point, with a net charge of $2 \mu\text{C} - 3 \mu\text{C} = -1 \mu\text{C}$. Thus

$$|\vec{E}| = k \frac{|q_s|}{d^2} = (9 \times 10^9) \frac{|-1 \times 10^{-6}|}{(3)^2} = 1000 \text{ N/C}$$